
Combining GPU Data-Parallel Computing with OpenGL

Mike Bailey
mjb@cs.oregonstate.edu

Oregon State University

mjb – May 7, 2013

Oregon State University
Computer Graphics

Mike Bailey

• Professor of Computer Science, Oregon State Univers ity

• Has worked at Sandia Labs, Purdue University, Megat ek,
San Diego Supercomputer Center (UC San Diego), and OSU

• Has taught over 5,000 students in his classes

mjb – May 7, 2013

Oregon State University
Computer Graphics

• mjb@cs.oregonstate.edu

Topics

• Introduction to Data Parallel Computing

• Introduction to OpenGL Vertex Buffers

• OpenGL Compute Shaders

• OpenCL

mjb – May 7, 2013

Oregon State University
Computer Graphics

• OpenCL

• References

Introduction to Data Parallel Computing

The scenario – many pieces of data need to undergo the same operation:

Particles

mjb – May 7, 2013

Oregon State University
Computer Graphics

Chain

Particles

Game of Life

Fluids

Cloth

Introduction to Data Parallel Computing

The scenario – many pieces of data need to undergo the same operation:

mjb – May 7, 2013

Oregon State University
Computer Graphics

Introduction to Data Parallel Computing

The scenario – many pieces of data need to undergo the same operation:

For your
convenience, the
data can be
thought of as 1D,

mjb – May 7, 2013

Oregon State University
Computer Graphics

thought of as 1D,
2D, or 3D.

Vertex Input

Vertex
Processing

Vertex
Processing

Vertex
Processing

Vertex
Processing

Vertex
Processing

Primitive Assembly

Note: GPUs are designed to Handle Data Parallel Com puting Well

mjb – May 7, 2013

Oregon State University
Computer Graphics

Rasterization

Fragment
Processing

Fragment
Processing

Fragment
Processing

Fragment
Processing

Fragment
Processing

Framebuffer

Vertex
Data

GPU executes parallel
code, treating the

vertices as an array to
compute

GPU executes
OpenGL, treating

the vertices as

Application
Program

Generates
Vertices

Data Parallel / OpenGL Vertex Interoperability:
The Basic Idea

mjb – May 7, 2013

Oregon State University
Computer Graphics

the vertices as
vertices to draw

glBegin(GL_TRIANGLES);
glVertex3f(x0, y0, z0);
glVertex3f(x1, y1, z1);
glVertex3f(x2, y2, z2);

23You listed the vertices individually:

In the Beginning of OpenGL …

mjb – May 7, 2013

Oregon State University
Computer Graphics

glVertex3f(x2, y2, z2);

glVertex3f(x0, y0, z0);
glVertex3f(x3, y3, z3);
glVertex3f(x4, y4, z4);

glEnd();

0
14

Then Someone Noticed That You Were
Transmitting and Processing Each Vertex Several Tim es…

For example:

mjb – May 7, 2013

Oregon State University
Computer Graphics

A Little Background -- the OpenGL Rendering Context

The OpenGL Rendering Context contains all the characteristic information
necessary to produce an image from geometry. This includes
transformations, colors, lighting, textures, where to send the display, etc.

Display
Dest.Context

Texture0 Texture1
Element

Array Buffer
Data Array

Buffer

mjb – May 7, 2013

Oregon State University
Computer Graphics

Some of these characteristics have a default value (e.g., lines are white, the
display goes to the screen) and some have nothing (e.g., no textures exist)

Color TransformationLighting

Dest.Context

More Background – What is an OpenGL “Object”?

An OpenGL Object is pretty much the same as a C++, C#, or Java object: it
encapsulates a group of data items and allows you to treat them as a unified whole.
For example, a Vertex Buffer Object could be defined in C++ by:

class VertexBufferObject
{

enum dataType; // int, float, …
void *memStart;
int memSize ;

mjb – May 7, 2013

Oregon State University
Computer Graphics

int memSize ;
};

Then, you could create any number of Vertex Buffer Object instances, each with its
own characteristics encapsulated within it. When you want to make that combination
current, you just need to bring in (“bind”) that entire object. When you bind an
object, all of its information comes with it.

More Background – How do you Create an OpenGL “Object ”?

In C++, objects are pointed to by their address.

In OpenGL, objects are pointed to by an unsigned integer handle. You can assign a
value for this handle yourself (not recommended), or have OpenGL generate one for
you that is guaranteed to be unique. For example:

GLuint bufA;

mjb – May 7, 2013

Oregon State University
Computer Graphics

glGenBuffers(1, &bufA);

This doesn’t actually allocate memory for the buffer object yet, it just acquires a
unique handle. To allocate memory, you need to bind this handle to the Context.

More Background -- “Binding” to the Context

The OpenGL term “binding” refers to “attaching” or “docking” (a metaphor which I
find to be more visually pleasing) an OpenGL object to the Context. You can then
assign characteristics, and they will “flow” through the Context into the object.

Vertex Buffer Object

mjb – May 7, 2013

Oregon State University
Computer Graphics

Context
Color Lighting

Texture0 Texture1
Element

Array Buffer

glBindBuffer(bufA, GL_ARRAY_BUFFER);
glBufferData(GL_ARRAY_BUFFER, numBytes, data, usage);

Data Array
Buffer

Transformation

More Background -- “Binding” to the Context

When you want to use that Vertex Buffer Object, just bind it again. All of the
characteristics will then be active, just as if you had specified them again.

Vertex Buffer Object

mjb – May 7, 2013

Oregon State University
Computer Graphics

Color Lighting

glBindBuffer(bufA, GL_ARRAY_BUFFER);

Context
Texture0 Texture1

Element
Array Buffer

Data Array
Buffer

Transformation

Transformation

Vertex Buffers: Putting Data in the Buffer Object

glBufferData(type, numBytes, data, usage);

type is the type of buffer object this is:
GL_ARRAY_BUFFER to store floating point vertices, normals, colors, and texture coordinates

GL_ELEMENT_ARRAY_BUFFER to store integer vertex indices to connect for drawing

mjb – May 7, 2013

Oregon State University
Computer Graphics

numBytes is the number of bytes to store in all. Not the number of numbers,
but the number of bytes!

data is the memory address of (i.e., pointer to) the data to be transferred to the
graphics card. This can be NULL, and the data can be transferred later.

Vertex Buffers: Putting Data in the Buffer Object

glBufferData(type, numbytes, data, usage);

usage is a hint as to how the data will be used: GL_xxx_yyy

where xxx should be one of:
STATIC this buffer will be written seldom from the CPU
DYNAMIC this buffer will be written often from the CPU

mjb – May 7, 2013

Oregon State University
Computer Graphics

DYNAMIC this buffer will be written often from the CPU
STATIC this buffer will be written often from the GPU

and yyy should be:
DRAW this buffer will be used for drawing

Vertex Buffers: Step #1 – Fill the Arrays

GLfloat Vertices[][3] =
{

{ 1., 2., 3. },
{ 4., 5., 6. },
. . .

};

Vertex Buffers: Step #2 – Create the Buffers and Fill Them

mjb – May 7, 2013

Oregon State University
Computer Graphics

Vertex Buffers: Step #2 – Create the Buffers and Fill Them

glGenBuffers(1, &bufA);

glBindBuffer(bufA, GL_ARRAY_BUFFER);

glBufferData(GL_ARRAY_BUFFER, 3*sizeof(float)*numVertices, Vertices, GL_STATIC_DRAW);

Vertex Buffers: Step #3 – Activate the Array Types T hat You Will Use

glEnableClientState(type)

where type can be any of:

GL_VERTEX_ARRAY
GL_COLOR_ARRAY
GL_NORMAL_ARRAY
GL_SECONDARY_COLOR_ARRAY
GL_TEXTURE_COORD_ARRAY

• Call this as many times as you need to enable all the arrays that you will need.

mjb – May 7, 2013

Oregon State University
Computer Graphics

• There are other types, too.

• To deactivate a type, call:

glDisableClientState(type)

Vertex Buffers: Step #4 – To Draw, First Bind the Bu ffers

glBindBuffer(bufA, GL_ARRAY_BUFFER);

glBindBuffer(bufB, GL_ELEMENT_ARRAY_BUFFER);

Vertex Buffers: Step #5 – Specify the Data

glVertexPointer(size, type, stride, rel_address);

glColorPointer(size, type, stride, rel_address);

glNormalPointer(type, stride, rel_address);

glSecondaryColorPointer(size, type, stride, rel_address);

glTexCoordPointer(size, type, stride, rel_address);

size is the spatial dimension, and can be: 2, 3, or 4

type can be:

Vertex Data

Color Data

Vertex Data

Color Data

Vertex Data

vs.

mjb – May 7, 2013

Oregon State University
Computer Graphics

GL_SHORT
GL_INT
GL_FLOAT
GL_DOUBLE

type can be:

stride is the byte offset between consecutive entries in the array (0 means tightly packed)

rel_address, the 4th argument, is the relative byte address from the start of the buffer where
the first element of this part of the data lives. Most of the time you use (void *)0

Vertex Data

Color Data

Vertex Data

Color Data

Vertex Buffers: Step #6 – Specify the Connections

GLuint TriIndices[][3] =

0
1

23

4If the vertices are not in order:

mjb – May 7, 2013

Oregon State University
Computer Graphics

GLuint TriIndices[][3] =
{

{ 0, 1, 2 },
{ 0, 3, 4 }

};
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, TriIndices);

glDrawArrays(GL_TRIANGLES, 0, 6);

If all the vertices are in order:

glBindBuffer(bufA, GL_ARRAY_BUFFER);
glBufferData(GL_ARRAY_BUFFER, 3*sizeof(float)*numVertices, NULL, GL_STATIC_DRAW);

float * vertexArray = glMapBuffer(GL_ARRAY_BUFFER, usage);

Vertex Buffers: Writing Data Directly into a Vertex Buffer

usage is an indication how the data will be used:

GL_READ_ONLY the vertex data will be read from, but not written to
GL_WRITE_ONLY the vertex data will be written to, but not read from
GL_READ_WRITE the vertex data will be read from and written to

Map the buffer from GPU memory into the memory space of the application:

mjb – May 7, 2013

Oregon State University
Computer Graphics

GL_READ_WRITE the vertex data will be read from and written to

glUnMapBuffer(GL_ARRAY_BUFFER);

When you are done, be sure to call:

You can now use vertexArray[] like any other floating-point array.

OpenGL Compute Shaders

mjb – May 7, 2013

Oregon State University
Computer Graphics

OpenGL Compute Shader – the Basic Idea

Application Invokes the Compute Shader
to Modify the OpenGL Buffer Data

A Shader Program, with only a Compute Shader in it

mjb – May 7, 2013

Oregon State University
Computer Graphics

Application Invokes OpenGL Rendering
which Reads the Buffer Data

Another Shader Program, with pipeline rendering in it

If I Know GLSL, What Do I Need to Do Differently to Write a Compute Shader?

Not much:

1. A Compute Shader is created just like any other GLSL shader, except that
its type is GL_COMPUTE_SHADER (duh…). You compile it and link it
just like any other GLSL shader program.

2. A Compute Shader must be in a shader program all by itself. There
cannot be vertex, fragment, etc. shaders in there with it.

3. A Compute Shader has access to uniform variables and buffer objects, but
cannot access any pipeline variables such as attributes or variables from

mjb – May 7, 2013

Oregon State University
Computer Graphics

cannot access any pipeline variables such as attributes or variables from
other stages. It stands alone.

4. A Compute Shader needs to declare the number of work-items in each of
its work-groups in a special GLSL layout statement.

More information on items 3 and 4 are coming up . . .

The Example We Are Going to Use Here is a Particle System

The Compute Shader Moves the Particles by
Recomputing the Position and Velocity Buffers

mjb – May 7, 2013

Oregon State University
Computer Graphics

The OpenGL Rendering Draws the Particles
by Reading the Position Buffer

#define NUM_PARTICLES 1024*1024 // total number of particles to move
#define WORK_GROUP_SIZE 128 // # work-items per work-group

struct pos
{

float x, y, z, w; // positions
};

struct vel
{

float vx, vy, vz, vw; // velocities
};

Setting up the Shader Storage Buffer Objects in You r C Program

mjb – May 7, 2013

Oregon State University
Computer Graphics

struct color
{

float r, g, b, a; // colors
};

// need to do the following for both position, velocity, and colors of the particles:

GLuint posSSbo;
GLuint velSSbo
GLuint colSSbo;

Note that .w and .vw are not actually needed. But, by making these structure sizes a multiple
of 4 floats, it doesn’t matter if they are declared with the std140 or the std430 qualifier. I
think this is a good thing. (is it?)

glGenBuffers(1, &posSSbo);
glBindBuffer(GL_SHADER_STORAGE_BUFFER, posSSbo);
glBufferData(GL_SHADER_STORAGE_BUFFER, NUM_PARTICLES * sizeof(struct pos), NULL, GL_STATIC_DRAW);

GLint bufMask = GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_BUFFER_BIT ; // the invalidate makes a big difference when re-writing

struct pos *points = (struct pos *) glMapBufferRange(GL_SHADER_STORAGE_BUFFER, 0, NUM_PARTICLES * sizeof(struct pos), bufMask);
for(int i = 0; i < NUM_PARTICLES; i++)
{

points[i].x = Ranf(XMIN, XMAX);
points[i].y = Ranf(YMIN, YMAX);
points[i].z = Ranf(ZMIN, ZMAX);
points[i].w = 1.;

}
glUnmapBuffer(GL_SHADER_STORAGE_BUFFER);

Setting up the Shader Storage Buffer Objects in You r C Program

mjb – May 7, 2013

Oregon State University
Computer Graphics

glUnmapBuffer(GL_SHADER_STORAGE_BUFFER);

glGenBuffers(1, &velSSbo);
glBindBuffer(GL_SHADER_STORAGE_BUFFER, velSSbo);
glBufferData(GL_SHADER_STORAGE_BUFFER, NUM_PARTICLES * sizeof(struct vel), NULL, GL_STATIC_DRAW);

struct vel *vels = (struct vel *) glMapBufferRange(GL_SHADER_STORAGE_BUFFER, 0, NUM_PARTICLES * sizeof(struct vel), bufMask);
for(int i = 0; i < NUM_PARTICLES; i++)
{

vels[i].vx = Ranf(VXMIN, VXMAX);
vels[i].vy = Ranf(VYMIN, VYMAX);
vels[i].vz = Ranf(VZMIN, VZMAX);
vels[i].vw = 0.;

}
glUnmapBuffer(GL_SHADER_STORAGE_BUFFER);

The same would possibly need to be done for the color shader storage buffer object

5 Work Groups

The Data Needs to be Divided into Large Quantities call Work-Groups, each of
which is further Divided into Smaller Units Called Work-Items

20 total items to compute:
The Invocation Space can be 1D,
2D, or 3D. This one is 1D.

mjb – May 7, 2013

Oregon State University
Computer Graphics

4 Work-Items
#

GlobalInvocationSize
WorkGroups

WorkGroupSize
=

20
5 4

4
x =

The Similarity in Diagrams is not a Coincidence!

mjb – May 7, 2013

Oregon State University
Computer Graphics

4
W

or
k-

G
ro

up
s

The Data Needs to be Divided into Large Quantities call Work-Groups, each of
which is further Divided into Smaller Units Called Work-Items

The Invocation Space can be 1D,
2D, or 3D. This one is 2D.

20x12 (=240) total items to compute:

mjb – May 7, 2013

Oregon State University
Computer Graphics

4 Work-Items

3
W

or
k-

Ite
m

s

5 Work-Groups

#
GlobalInvocationSize

WorkGroups
WorkGroupSize

=

20 12
5 4

4 3

x
x

x
=

The Similarity in Diagrams is not a Coincidence!

mjb – May 7, 2013

Oregon State University
Computer Graphics

Running the Compute Shader from the Application

void glDispatchCompute(num_groups_x, num_gro ups_y, num_groups_z);

mjb – May 7, 2013

Oregon State University
Computer Graphics

num_groups_x

nu
m

_g
ro

up
s_

y

If the problem is 2D, then
num_groups_z = 1

If the problem is 1D, then
num_groups_y = 1 and
num_groups_z = 1

glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 4, posSSbo);
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 5, velSSbo);
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 6, colSSbo);

. . .

glUseProgram(MyComputeShaderProgram);
glDispatchCompute(NUM_PARTICLES / WORK_GROUP_SIZE , 1, 1);
glMemoryBarrier (GL_SHADER_STORAGE_BARRIER_BIT);

. . .

glUseProgram(MyRenderingShaderProgram);
glBindBuffer(GL_ARRAY_BUFFER, posSSbo);

Invoking the Compute Shader in Your C Program

mjb – May 7, 2013

Oregon State University
Computer Graphics

glBindBuffer(GL_ARRAY_BUFFER, posSSbo);
glVertexPointer(4, GL_FLOAT, 0, (void *)0);
glEnableClientState(GL_VERTEX_ARRAY);
glDrawArrays(GL_POINTS, 0, NUM_PARTICLES);
glDisableClientState(GL_VERTEX_ARRAY);
glBindBuffer(GL_ARRAY_BUFFER, 0);

Special Pre-set Variables in the Compute Shader

in uvec3 gl_NumWorkGroups ;

const uvec3 gl_WorkGroupSize ;

in uvec3 gl_WorkGroupID ;

in uvec3 gl_LocalInvocationID ;

in uvec3 gl_GlobalInvocationID ;

in uint gl_LocalInvocationIndex ;

Same numbers as in the glDispatchCompute call

Same numbers as in the layout local_size_*

Which workgroup this thread is in

Where this thread is in the current workgroup

Where this thread is in all the work items

1D representation of the gl_LocalInvocationID
(used for indexing into a shared array)

mjb – May 7, 2013

Oregon State University
Computer Graphics

(used for indexing into a shared array)

0 ≤ gl_WorkGroupID ≤ gl_NumWorkGroups – 1

0 ≤ gl_LocalInvocationID ≤ gl_WorkGroupSize – 1

gl_GlobalInvocationID = gl_WorkGroupID * gl_WorkGroupSize + gl_LocalInvocationID

gl_LocalInvocationIndex = gl_LocalInvocationID.z * gl_WorkGroupSize.y * gl_WorkGroupSize.x +

gl_LocalInvocationID.y * gl_WorkGroupSize.x +

gl_LocalInvocationID.x

#version 430 compatibility
#extension GL_ARB_compute_shader : enable
#extension GL_ARB_shader_storage_buffer_object : enable;

layout(std140, binding=4) buffer Pos
{

vec4 Positions[]; // array of structures
};

layout(std140, binding=5) buffer Vel
{

vec4 Velocities[]; // array of structures
};

layout(std140, binding=6) buffer Col
{

The Particle System Compute Shader -- Setup

You can use the empty
brackets, but only on the
last element of the buffer.
The actual dimension will be
determined for you when
OpenGL examines the size
of this buffer’s data store.

mjb – May 7, 2013

Oregon State University
Computer Graphics

{
vec4 Colors[]; // array of structures

};

layout(local_size_x = 128, local_size_y = 1, local_si ze_z = 1) in;

const vec3 G = vec3(0., -9.8, 0.);
const float DT = 0.1;

. . .

uint gid = gl_GlobalInvocationID.x; // the .y and .z are both 1 in this case

The Particle System Compute Shader – The Physics

mjb – May 7, 2013

Oregon State University
Computer Graphics

vec3 p = Positions[gid].xyz;
vec3 v = Velocities[gid].xyz;

vec3 pp = p + v*DT + .5*DT*DT*G;
vec3 vp = v + G*DT;

Positions[gid].xyz = pp;
Velocities[gid].xyz = vp;

21
'

2
'

p p v t G t

v v G t

= + ⋅ + ⋅

= + ⋅

const vec4 SPHERE = vec4(-100., -800., 0., 600.); // x, y, z, r
// (could also have passed this in)

vec3
Bounce(vec3 vin, vec3 n)
{

vec3 vout = reflect(vin, n);
return vout;

}

vec3
BounceSphere(vec3 p, vec3 v, vec4 s)
{

The Particle System Compute Shader –
How About Introducing a Bounce?

in out
n

mjb – May 7, 2013

Oregon State University
Computer Graphics

{
vec3 n = normalize(p - s.xyz);
return Bounce(v, n);

}

bool
IsInsideSphere(vec3 p, vec4 s)
{

float r = length(p - s.xyz);
return (r < s.w);

}

uint gid = gl_GlobalInvocationID.x; // the .y and .z are both 1 in this case

vec3 p = Positions[gid].xyz;
vec3 v = Velocities[gid].xyz;

vec3 pp = p + v*DT + .5*DT*DT*G;
vec3 vp = v + G*DT;

if(IsInsideSphere(pp, SPHERE))

The Particle System Compute Shader –
How About Introducing a Bounce?

21
'

2
'

p p v t G t

v v G t

= + ⋅ + ⋅

= + ⋅

Graphics Trick Alert: Making the bounce

mjb – May 7, 2013

Oregon State University
Computer Graphics

if(IsInsideSphere(pp, SPHERE))
{

vp = BounceSphere(p, v, SPHERE);
pp = p + vp*DT + .5*DT*DT*G;

}

Positions[gid].xyz = pp;
Velocities[gid].xyz = vp;

Graphics Trick Alert: Making the bounce
happen from the surface of the sphere is
time-consuming. Instead, bounce from the
previous position in space. If DT is small
enough, nobody will ever know…

The Bouncing Particle System Compute Shader –
What Does It Look Like?

mjb – May 7, 2013

Oregon State University
Computer Graphics

OpenCL Computing Shaders

mjb – May 7, 2013

Oregon State University
Computer Graphics

OpenCL Acquires the Buffer

OpenCL Writes New Values
Into the Buffer

Either OpenGL or OpenCL Can Manipulate the Vertex B uffer at a Time, but not Both:
All of this Happens on the GPU

mjb – May 7, 2013

Oregon State University
Computer Graphics

OpenGL Draws

OpenCL Releases the Buffer

= Buffer Owner

#include <stdio.h>
#define _USE_MATH_DEFINES
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <omp.h>

#ifdef WIN32
#include <windows.h>
#endif

#ifdef WIN32

1. Program Header

mjb – May 7, 2013

Oregon State University
Computer Graphics

#ifdef WIN32
#include "glew.h"
#endif

#include <GL/gl.h>
#include <GL/glu.h>
#include "glut.h"
#include "glui.h"

#include "cl.h"
#include "cl_gl.h"

// structs we will need later:

struct xyzw
{

float x, y, z, w;
};

struct rgba

Structures We Will Use to Fill the Vertex Buffers

mjb – May 7, 2013

Oregon State University
Computer Graphics

struct rgba
{

float r, g, b, a;
};

size_t GlobalWorkSize[3] = { NUM_PARTICLES, 1, 1 };
size_t LocalWorkSize[3] = { LOCAL_SIZE, 1, 1 };

gluint hPobj; // host opengl object
gluint hCobj; // host opengl object
struct xyzw * hVel; // host c array
cl_mem dPobj; // device memory buffer
cl_mem dCobj; // device memory buffer
cl_mem dVel; // device memory buffer

OpenCL Global Variables

mjb – May 7, 2013

Oregon State University
Computer Graphics

cl_mem dVel; // device memory buffer

cl_command_queue CmdQueue;
cl_device_id Device;
cl_kernel Kernel;
cl_platform_id Platform;
cl_program Program;

int
main (int argc, char *argv[])
{

glutInit(&argc, argv);
InitGraphics();
InitLists();
InitCL();
Reset();
InitGlui();

A Deceptively-Simple Main Program

mjb – May 7, 2013

Oregon State University
Computer Graphics

InitGlui();
glutMainLoop();
return 0;

}

void
InitCL()
{

. . .

status = clGetDeviceIDs(Platform, CL_DEVICE_TYPE_GPU, 1, &Device , NULL);
PrintCLError(status, "clGetDeviceIDs: ");

// since this is an opengl interoperability program,
// check if the opengl sharing extension is supported
// (no point going on if it isn’t):
// (we need the Device in order to ask, so we can't do it any sooner than right here)

Setting up OpenCL:
Querying the Existence of an OpenCL Extension

mjb – May 7, 2013

Oregon State University
Computer Graphics

// (we need the Device in order to ask, so we can't do it any sooner than right here)

if(IsCLExtensionSupported("cl_khr_gl_sharing"))
{

fprintf(stderr, "cl_khr_gl_sharing is supported.\n");
}
else
{

fprintf(stderr, "cl_khr_gl_sharing is not supported -- sorry.\n");
return;

}

bool
IsCLExtensionSupported(const char *extension)
{

// see if the extension is bogus:

if(extension == NULL || extension[0] == '\0')
return false;

char * where = (char *) strchr(extension, ' ');
if(where != NULL)

return false;

// get the full list of extensions:

size_t extensionSize;
clGetDeviceInfo(Device , CL_DEVICE_EXTENSIONS, 0, NULL, &extensionSize);
char *extensions = new char [extensionSize];
clGetDeviceInfo(Device , CL_DEVICE_EXTENSIONS, extensionSize, extensions, NULL);

Querying the Existence of an OpenCL Extension

mjb – May 7, 2013

Oregon State University
Computer Graphics

for(char * start = extensions ; ;)
{

where = (char *) strstr((const char *) start, extension);
if(where == 0)
{

delete [] extensions;
return false;

}

char * terminator = where + strlen(extension); // points to what should be the separator

if(*terminator == ' ' || *terminator == '\0' || *terminator == '\r' || *terminator == '\n')
{

delete [] extensions;
return true;

}
start = terminator;

}
}

void
InitCL()
{

. . .

// get the platform id:

status = clGetPlatformIDs(1, &Platform, NULL);
PrintCLError(status, "clGetPlatformIDs: ");

// get the device id:

status = clGetDeviceIDs(Platform, CL_DEVICE_TYPE_GPU, 1, &Device, NULL);
PrintCLError(status, "clGetDeviceIDs: ");

Setting up OpenCL: The Interoperability Context

mjb – May 7, 2013

Oregon State University
Computer Graphics

PrintCLError(status, "clGetDeviceIDs: ");

// 3. create a special opencl context based on the opengl context:

cl_context_properties props[] =
{

CL_GL_CONTEXT_KHR, (cl_context_properties) wglGetCurrentContext(),
CL_WGL_HDC_KHR, (cl_context_properties) wglGetCurrentDC(),
CL_CONTEXT_PLATFORM, (cl_context_properties) Platform ,
0

};

cl_context Context = clCreateContext(props, 1, &Device, NULL, NULL, &status);
PrintCLError(status, "clCreateContext: ");

For Windows:
cl_context_properties props[] =
{

CL_GL_CONTEXT_KHR, (cl_context_properties) wglGetCurrentContext(),
CL_WGL_HDC_KHR, (cl_context_properties) wglGetCurrentDC(),
CL_CONTEXT_PLATFORM, (cl_context_properties) Platform,
0

};
cl_context Context = clCreateContext(props, 1, &Device, NULL, NULL, &status);

For Linux:
cl_context_properties props[] =
{

Setting up OpenCL:
The Interoperability Context is Different for each OS

mjb – May 7, 2013

Oregon State University
Computer Graphics

{
CL_GL_CONTEXT_KHR, (cl_context_properties) glXGetCurrentContext(),
CL_GLX_DISPLAY_KHR, (cl_context_properties) glXGetCurrentDisplay(),
CL_CONTEXT_PLATFORM, (cl_context_properties) Platform,
0

};
cl_context Context = clCreateContext(props, 1, &Device, NULL, NULL, &status);

For Apple:
cl_context_properties props[] =
{

CL_CONTEXT_PROPERTY_USE_CGL_SHAREGROUP_APPLE,
(cl_context_properties) kCGLShareGroup,

0
};
cl_context Context = clCreateContext(props, 0, 0, NULL, NULL, &status);

void
InitCL()
{

. . .

// create the velocity array and the opengl vertex array buffer and color array buffer:

delete [] hVel;
hVel = new struct xyzw [NUM_PARTICLES];

glGenBuffers(1, &hPobj);
glBindBuffer(GL_ARRAY_BUFFER, hPobj);
glBufferData(GL_ARRAY_BUFFER, 4 * NUM_PARTICLES * sizeof(float), NULL, GL_STATIC_DRAW);

Setting up OpenCL

mjb – May 7, 2013

Oregon State University
Computer Graphics

glBufferData(GL_ARRAY_BUFFER, 4 * NUM_PARTICLES * sizeof(float), NULL, GL_STATIC_DRAW);

glGenBuffers(1, &hCobj);
glBindBuffer(GL_ARRAY_BUFFER, hCobj);
glBufferData(GL_ARRAY_BUFFER, 4 * NUM_PARTICLES * sizeof(float), NULL, GL_STATIC_DRAW);

glBindBuffer(GL_ARRAY_BUFFER, 0); // unbind the buffer

// fill those arrays and buffers:

ResetParticles();

void
ResetParticles()
{

glBindBuffer(GL_ARRAY_BUFFER, hPobj);
struct xyzw *points = (struct xyzw *) glMapBuffer(GL_ARRAY_BUFFER, GL_WRITE_ONLY);
for(int i = 0; i < NUM_PARTICLES; i++)
{

points[i].x = Ranf(XMIN, XMAX);
points[i].y = Ranf(YMIN, YMAX);
points[i].z = Ranf(ZMIN, ZMAX);
points[i].w = 1.;

}
glUnmapBuffer(GL_ARRAY_BUFFER);

Setting the Initial Particle Parameters

mjb – May 7, 2013

Oregon State University
Computer Graphics

glBindBuffer(GL_ARRAY_BUFFER, hCobj);
struct rgba *colors = (struct rgba *) glMapBuffer(GL_ARRAY_BUFFER, GL_WRITE_ONLY);
for(int i = 0; i < NUM_PARTICLES; i++)
{

colors[i].r = Ranf(0., 1.);
colors[i].g = Ranf(0., 1.);
colors[i].b = Ranf(0., 1.);
colors[i].a = 1.;

}
glUnmapBuffer(GL_ARRAY_BUFFER);

. . .

void
ResetParticles()
{

. . .

delete [] hVel;
hVel = new struct xyzw [NUM_PARTICLES];
for(int i = 0; i < NUM_PARTICLES; i++)
{

hVel[i].x = Ranf(VMIN, VMAX);
hVel[i].y = Ranf(0. , VMAX);

Setting the Initial Particle Parameters

mjb – May 7, 2013

Oregon State University
Computer Graphics

hVel[i].y = Ranf(0. , VMAX);
hVel[i].z = Ranf(VMIN, VMAX);
hVel[i].w = 0.;

}
}

void
InitCL()
{

. . .

// 5. create the opencl version of the velocity array:

dVel = clCreateBuffer (Context, CL_MEM_READ_WRITE, 4*sizeof(float)*NUM_PARTICLES, NULL, &status);
PrintCLError(status, "clCreateBuffer: ");

// 6. write the data from the host buffers to the device buffers:

status = clEnqueueWriteBuffer (CmdQueue, dVel, CL_FALSE, 0, 4*sizeof(float)*NUM_PARTICLES, hVel, 0, NULL, NULL);

Setting-up the Device-Side Buffers

mjb – May 7, 2013

Oregon State University
Computer Graphics

status = clEnqueueWriteBuffer (CmdQueue, dVel, CL_FALSE, 0, 4*sizeof(float)*NUM_PARTICLES, hVel, 0, NULL, NULL);
PrintCLError(status, "clEneueueWriteBuffer: ");

// 5. create the opencl version of the opengl buffers:

dPobj = clCreateFromGLBuffer (Context, 0, hPobj, &status);
PrintCLError(status, "clCreateFromGLBuffer (1)");

dCobj = clCreateFromGLBuffer (Context, 0, hCobj, &status);
PrintCLError(status, "clCreateFromGLBuffer (2)");

void
InitCL()
{

. . .

// 10. setup the arguments to the Kernel object:

status = clSetKernelArg(Kernel, 0, sizeof(cl_mem), &dPobj);
PrintCLError(status,"clSetKernelArg (1): ");

status = clSetKernelArg(Kernel, 1, sizeof(cl_mem), &dVel);
PrintCLError(status , "clSetKernelArg (2): ");

Setup the Kernel Arguments…

mjb – May 7, 2013

Oregon State University
Computer Graphics

status = clSetKernelArg(Kernel, 2, sizeof(cl_mem), &dCobj);
PrintCLError(status, "clSetKernelArg (3): ");

kernel
void
Particle (global point * dPobj, global vector * dVel, global color * dCobj)
{

. . .
}

… to Match the Kernel’s Parameter List

void
Animate()
{

// acquire the vertex buffers from opengl:

glutSetWindow(MainWindow);
glFinish();

cl_int status = clEnqueueAcquireGLObjects (CmdQueue, 1, &dPobj, 0, NULL, NULL);
PrintCLError(status, “clEnqueueAcquireGLObjects (1) : “);
status = clEnqueueAcquireGLObjects (CmdQueue, 1, &dCobj, 0, NULL, NULL);
PrintCLError(status, “clEnqueueAcquireGLObjects (2) : “);

double time0 = omp_get_wtime();

// 11. enqueue the Kernel object for execution:

cl_event wait;

The “Idle Function” Tells OpenCL to Do Its Computing

mjb – May 7, 2013

Oregon State University
Computer Graphics

cl_event wait;
status = clEnqueueNDRangeKernel(CmdQueue, Kernel, 1, NULL, GlobalWorkSize, LocalWorkSize, 0, NULL, &wait);
PrintCLError(status, "clEnqueueNDRangeKernel: ");

status = clWaitForEvents(1, &wait);
PrintCLError(status, "clWaitForEvents: ");

double time1 = omp_get_wtime();
ElapsedTime = time1 - time0;

clFinish(CmdQueue);
clEnqueueReleaseGLObjects(CmdQueue, 1, &dCobj, 0, NULL, NULL);
PrintCLError(status, “clEnqueueReleaseGLObjects (1): “);
clEnqueueReleaseGLObjects(CmdQueue, 1, &dPobj, 0, NULL, NULL);
PrintCLError(status, “clEnqueueReleaseGLObject (2): “);

glutSetWindow(MainWindow);
glutPostRedisplay();

}

void
Display()
{

. . .

glBindBuffer(GL_ARRAY_BUFFER, hPobj);
glVertexPointer(4, GL_FLOAT, 0, (void *)0);
glEnableClientState(GL_VERTEX_ARRAY);

glBindBuffer(GL_ARRAY_BUFFER, hCobj);
glColorPointer(4, GL_FLOAT, 0, (void *)0);
glEnableClientState(GL_COLOR_ARRAY);

Redrawing the Scene:
The Particles

mjb – May 7, 2013

Oregon State University
Computer Graphics

glEnableClientState(GL_COLOR_ARRAY);

glPointSize(2.);
glDrawArrays(GL_POINTS, 0, NUM_PARTICLES);
glPointSize(1.);

glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_COLOR_ARRAY);
glBindBuffer(GL_ARRAY_BUFFER, 0);

glutSwapBuffers();
glFlush();

}

void
Quit()
{

Glui->close();
glutSetWindow(MainWindow);
glFinish();
glutDestroyWindow(MainWindow);

// 13. clean everything up:

13. Clean-up

mjb – May 7, 2013

Oregon State University
Computer Graphics

clReleaseKernel(Kernel);
clReleaseProgram(Program);
clReleaseCommandQueue(CmdQueue);
clReleaseMemObject(dPobj);
clReleaseMemObject(dCobj);

exit(0);
}

kernel
void
Particle (global point * dPobj, global vector * dVel, global color * dCobj)
{

int gid = get_global_id(0); // particle #

point p = dPobj[gid];
vector v = dVel[gid];

point pp = p + v*DT + .5*DT*DT*G; // p’
vector vp = v + G*DT; // v’
pp.w = 1.;
vp.w = 0.;

particles.cl

mjb – May 7, 2013

Oregon State University
Computer Graphics

vp.w = 0.;

if(IsInsideSphere(pp, Sphere1))
{

vp = BounceSphere(p, v, Sphere1);
pp = p + vp*DT + .5*DT*DT*G;

}

dPobj[gid] = pp;
dVel[gid] = vp;

}

typedef float4 point;
typedef float4 vector;
typedef float4 color;
typedef float4 sphere;

constant float4 G = (float4) (0., -9.8, 0., 0.);
constant float DT = 0.1;
constant sphere Sphere1 = (sphere)(-100., -800., 0., 600.);

vector
Bounce (vector in, vector n)
{

particles.cl

mjb – May 7, 2013

Oregon State University
Computer Graphics

{
n.w = 0.;
n = normalize(n);
vector out = in - 2. * n * dot(in.xyz, n.xyz);
out.w = 0.;
return out;

}

vector
BounceSphere (point p, vector v, sphere s)
{

vector n;
n.xyz = fast_normalize(p.xyz - s.xyz);
n.w = 0.;
return Bounce(v, n);

}

bool

particles.cl

mjb – May 7, 2013

Oregon State University
Computer Graphics

bool
IsInsideSphere (point p, sphere s)
{

float r = fast_length(p.xyz - s.xyz);
return (r < s.w);

}

G
ig

aP
ar

tic
le

s
/ S

ec
on

d

Performance

mjb – May 7, 2013

Oregon State University
Computer Graphics

Number of Particles (x1024)

G
ig

aP
ar

tic
le

s

How Do You Choose Between Compute Shaders and OpenC L?

OpenCL and Compute Shaders are great! They do a super job of using the GPU for general-purpose
data-parallel computing. So, how do you choose between Compute Shaders and OpenCL? Here’s
what I think:

• OpenCL requires installing a separate driver and separate libraries. While this is not a huge deal,
it does take time and effort. Compute Shaders are “just there” as part of OpenGL 4.3.

• OpenCL is more feature-rich than OpenGL compute shaders.

• Compute Shaders use the GLSL language, something that all OpenGL programmers should
already be familiar with (or will be soon).

mjb – May 7, 2013

Oregon State University
Computer Graphics

• Compute shaders use the same context as does the OpenGL rendering pipeline. There is no
need to acquire and release the context as OpenGL+OpenCL must do.

• Calls to OpenGL compute shaders appear to be more lightweight than calls to OpenCL kernels
are. This should result in better performance.

• Using OpenCL is more involved. It requires more setup (queries, platforms, devices, queues,
kernels, etc.). Compute Shaders are more convenient. They just flow in with the graphics.

How Do You Choose Between Compute Shaders and OpenC L?

The bottom line is that I use OpenCL for the big, bad stuff. But, for lighter-
weight data-parallel computing, I’ve been using the Compute Shaders.

An example of a lighter-weight data-parallel graphics-related application is a
particle system .

An example of a bigger, badder data-parallel graphics-related application is a
volume toolkit .

mjb – May 7, 2013

Oregon State University
Computer Graphics

volume toolkit .

References

• Dave Shreiner, Graham Sellers, John Kessenich, and Bill Licea-Kane, OpenGL
Programming Guide, 8th Edition, 2013.

• Peter Pacheco, An Introduction to Parallel Programming, Morgan-Kaufmann, 2011.

• Aaftah Munshi, Benedict Gaster, Timothy Mattson, James Fung, and Dan Ginsburg,
OpenCL Programming Guide Addison-Wesley, 2012.

mjb – May 7, 2013

Oregon State University
Computer Graphics

• Benedict Gaster, Lee Howes, David Kaeli, Perhaad Mistry, and Dana Schaa,
Heterogeneous Computing with OpenCL, Morgan-Kaufmann, 2012.

